A Tight Scrutiny Of Electroweak Phase Transitions

Harikrishnan Ramani C.N.Yang Institute of Theoretical Physics

Based on 1511±1.xxxxx with David Curtin & Patrick Meade

Baryogenesis problem

- Fact:The universe around us has excess matter over antimatter
- Baryon-Antibaryon asymmetry with symmetric initial conditions.

- Sakharov Conditions:
- 1. C&CP violation
- 2. B violating processes
- 3. Thermal inequilibrium

Finite Temperature Effective Potential

- Need Effective Potential V to talk about vev as its minimum.
- Tree level V gets corrections at 1-loop
- Captured by Coleman-Weinberg calculation
- Finite temperature: virtual interactions with plasma
- Imaginary Time formalism to modify potential

10 second crash course in FTFT

$$V_{CW} = \frac{1}{2} \int \frac{d^4k}{(2\pi)^4} Log[k_E^2 + M^2]$$

Good old CW potential

$$\int \frac{dk_4}{2\pi} f(k_4) \to T \sum_n f(k_4 = i\omega_n), \omega_n = 2\pi nT$$

Imaginary time formalism replacement

$$V_{CW} = V_{CW}^{T=0} + V_{CW}^{T \neq 0}$$

Splits neatly into T-dependent and T-independent parts

$$V_{CW}^{T\neq 0} = \frac{T}{2\pi^2} \int dp p^2 \log[1 - \exp[-\beta\sqrt{p^2 + M^2}]]$$

Break down of P.T: Conventional wisdom

$$V_{CW}^{T\neq 0} = \frac{T^4}{2\pi^2} J_B(\frac{M^2}{T^2})$$

In the high T limit,

$$\Pi_1(T) = \frac{d^2 V_{CW}^{T \neq 0}}{dh^2} = \frac{\lambda}{4} T^2$$

- the one loop generated thermal mass is much larger than the tree level mass.
- Break down in P.T.

Ring Terms

- contributions from all orders(called Daisy diagrams).
- to resum Daisies,replace $M^2 o M^2 + \Pi^2$

Incapable standard model

- Not enough CP violation
- Could EWSB(h=0 -> h=v) provide thermal in-equilibrium?
- Phase transition required to be first order to prevent Baryon washout
- Standard model provides only second order phase transition

Cooling Down

1st order Phase Transition

2nd order Phase Transition

Left is good, further $v_c/T_c > 1$

Extensions to Higgs

Chung et.al. 1209. 1819

Why is Type 1 special?

- only type where Temperature produces the cubic coupling.
- All other types affect the Higgs tri-linear coupling
- Requires precision thermal field theory.

High temperature approximation Ring induced phase transition

- add new singlet : $\Delta L = -\frac{1}{2}\mu_s^2 s^2 + \frac{1}{2}\lambda_{hs}h^2 s^2 + \frac{1}{4}\lambda_s s^4$
- now, at high T, $V_{CW}^{T\neq 0} = -\frac{T^4}{90} + \frac{T^4}{24} \frac{M^2}{T^2} \frac{T^4}{12\pi} (\frac{M^3}{T^3})$
- replacing, $M^2 \rightarrow M^2 + \Pi$ for an extra singlet coupled to the Higgs,
- you get $(M_s^2 + \Pi)^{3/2} = (-\mu_s^2 + \lambda_{hs}h^2 + \Pi)^{3/2}$
- and then $(M_s^2 + \Pi)^{3/2} = (-\mu_s^2 + \lambda_{hs}h^2 + \Pi)^{3/2} = \lambda_{hs}^{(3/2)}h^3$

Wait What?

- How is high T limit valid? T~ EW scale and so are all masses
- In fact typically the extra scalar is more massive
- Mass is h dependent.
- regions where M is small:approximation valid

Problems with

$$\Pi = \frac{\lambda_{hs}}{2} T^2$$

- Thermal mass doesn't decouple as Ms becomes massive
- Thermal mass seems to be h independent
- Super-Daisy terms not taken into account.

New Work

What we did

- Computed thermal mass accurately.(no high-T expansion)
- How about new thermal mass after substitution?

$$\Pi_{\text{super}} = \frac{dV_T'}{dh} [M^2 \to M^2 + \Pi_{\text{super}}]$$

 Solved iteratively to take into account superdaisy

RESULTS

Old vs New Thermal Mass

Procedure

- Account for accurate thermal mass in potential
- Cool down to find critical temperature
- is S still stable?, i.e. $M_s^2 + \Pi_s > 0$
- is $v_c/T_c > 1$

RESULTS

Parameter space where ring induced 1st-order phase transition feasible

- 1 step:S stable old approx
- 2 step:S unstable old approx
- **---** λSmin
- 1 step:S stable new
- 2 step:S unstable new

RESULTS-IDM

Parameter space where ring induced 1st-order phase transition feasible

	M _H	M _A	M _H +-	λL	λτ	v _c /T _c (old)	v _c /T _c (new)
BM1	66	300	300	0.01	0.01	1.5	1.1
BM2	200	400	400	0.01	0.01	1.5	1.2
вмз	5	265	265	-0.006	0.01	1.3	1.0

for v_c/T_c(old) refer 1504.05949

Summary

- FTFT required to handle EWPT
- in some regimes high T approx not valid
- Full iteration based computation the way out
- Leads to drastically reduced parameter
 space for thermally induced phase transition

The Ring has awoken, its heard its masters call

